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Abstract- This work rigorously treats thermal electromagnetic noise in lossy waveguides and develops
explicit modal equivalent-circuit representations for the noise generated by arbitrary passive networks
embedded in them. The results show that the formulations in common use are limited to lossless

transmission media.
INTRODUCTION

Here we will place the theory of electrical noise in electromagnetic waveguides on firm theoretical ground,
developing explicit expressions for the spectral densities and the correlations of modal Thevenin-equivalent voltage
sources describing the electrical noise generated by arbitrary passive circuits embedded in lossy guides.

In 1928 Nyquist [1] explainedoinson’'s measurements of the electrical noise voltage of a resistor [2] by
examining the interaction between the resistor and a lossless transmission line supporting a single dominant mode
of propagation. Nyquist's arguments were based on the assumption that the modes of an electromagnetic resonator
form a closed system to which the second law of tbdymamics may be applied; maximizing the entropy of this
system shows that the average energy per unit bandwidth of each mode of the resbfizedf'{€-1) , Where
f is the frequency is the Boltzmann constarit,is the Planck constant, amds the absolute temperature of the
system. By applying this result to resonators formed from increasingly long sections of lossless transmission line,

Nyquist was able to determine the power spectral density of the electromagnetic energy of a single lossless mode
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in an infinite transmission line in thermal equilibrium with itg
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resistor and the line; the requirement that the average po,

flow between them be balanced in thermal equilibrium fixe i Tz=0
the electromagnetic energy radiated by the resistor into the V:l’ v'wvil_)
lossless mode of the line. This determined the spectral density % Tzl E; éﬂ vlvf_’

of the resistor's Thevenin-equivalent voltage describing its - :

electromagnetic noise. Figure 1. A passive but otherwise arbitrary multiport

éwork embedded in the lossless transmission lines
nnected to a lossy waveguide and its equivalent

was not actually a property of the resistor itself, but ofctfaiit.

Strictly speaking, Nyquist’s Thevenin-equivalent voItC

electromagnetic radiation emitted by the resistor into a mode of a lossless transmission line. Discussions of
Nyquist’s results are found in [3] and [4], and in numerous modern quantum-mechanical treatments of thermal
electrical noise.

From Nyquist’s results Schremp [5] developed Thevenin-equivalent representations for the electromagnetic
noise generated by reciprocal and passive but otherwise arbitrary multiport networks embedded in lossless
transmission lines. Twiss [6] extended these results to arbitrary passive multiport networks embedded in those
lines. Bosma [7] discusses their wave representations.

Nyquist's arguments cannot be extended directly to lossy waveguides because, when he apptbes thevsec
of thermodynamics to a waveguide mode, he assumes that it forms a closed system. In fact, a mode of a lossy
waveguide does not form a closed system, as it is coupled to and dissipated by the materials composing the guide.
Here we determine the thermal noise generated by arbitrary passive networks by considering how thermal energy
is transferred from passive networks embedded in lossless transmission lines, the special case where the results
of Nyquist and Twiss can be applied directly, to lossy waveguides.

Figure 1 illustrates the argument. It shows a passive multiport network at the left embedded in a set of lossless
transmission lines (for clarity only two are shown in the figure). To simplify the arguments, we will assume that
the lossless lines support only a single propagating mode and that all the other modes of the lines have decayed
away atz=-|; this allows us to apply in a straightforward manner the results of Twiss [6] to characterize the noise
there. The lossless transmission lines are connected to the lossy waveguide by a transition that is composed
entirely of lossless materials, beginszatl, and abruptly terminates in the lossy waveguidg=8t We will

account for all of the modes in the lossy waveguide; by this full accounting we will eliminate sources of



electromagnetic noise in the transition due to the excitation of high-order modes in the lossy guide. This and the
restriction that the transition is constructed only of lossless materials will allow us to treat it in the context of the
theory of [8] as truly lossless and sourceless. The simplest such transition is formed by continuing the lossless
transmission lines te=0 and abruptly connecting them to the lossy guide there.

In what follows we will use the general waveguide circuit theory of [8] to examine the flow of the noise from
the passive network of Figure 1, which can be characterized using the results of [6], through the lossless and
sourceless transition to the lossy waveguide. This will allow us to develop expressions for the noise generated by
the network to the left a=0 in the lossy guide, which we will express in terms of the spectral densities of modal
Thevenin-equivalent voltage sources and their correlations. Since we place no restrictions on the passive network,

we will conclude that the expression is general, valid for any passive network embedded in the lossy guide.

MODAL VOLTAGES AND CURRENTS

We require that the lossless transmission lines and lossy guide of Figure 1 be closed, umif@na in
constructed entirely of materials with isotropic permittivity and permeability. These restrictions ensure that the
electromagnetic eigenvalue problem is separable and that the lines and guide support discrete and complete sets
of forward and backward modes [8,9]; the continuous spectrum of radiation modes supported by open structures
are neglected here. As outlined in the introduction, we also assume only a single dominant mode in each of the
lossless lines at=-1. We can now apply the general waveguide theory of [8], and express the total transverse
electric fieldE,,, and total transverse magnetic fielg, in thenth lossless line with a single modal voltage

and modal current, defined by

v n I n
Epln(Z: _l) = % ePln . HPln(Z: _l) - l'p hPm ’ (1)
pon pOn

wheree,,, andh,,, are the transverse fields of the forward propagating dominant modg,aaddi , are
normalizing factors. We define the modal voltages and currents in the lossy waveguide in an analogous manner,
writing the total transverse electric fidi; and magnetic fieltH,, there in terms of the modal voltages, and

modal currents,,,, as



— Vum = ‘Wm
Ewt(z :O) = — € s Hwt(z :O) = 2_:1 F hwlm’ (2)

i
m=1 vam lWOm
wheree,,, andh,,, are the transverse fields of tmeh forward propagating mode of the lossy waveguigg,

andi,,, are normalizing factors, and the sums avwepan the set of all modes in the guide, typically infinite in

number. This assignment of discrete modal voltages and currents to each mode cannot be made in open guides,

which support in addition a continuous spectrum of radiation modes, necessitating the restriction here to closed

guides.
In accordance with [8] and [10], we place the restrictio%nip()n* = f epmxhpm*-z das and
Voombwom = f e,..<h. "z dS, where “* indicates the complex conjugate, on the normalizing fagiQys on,

Vwom @ndi,on this restriction assures that, when only one mode is present, the power transmitted across a
reference plane by that mode alon®és (vpn ipn*) Rer(v i " , as appropriate. If we efpasebe the
integral ofe,,, over a given path in the transverse plane of the lossy guidey,thefil correspond to the integral
of E,, over that same path when only thid mode is present. Likewise, if we cho@gg to be the integral di,;,
around a given closed path in the transverse plane of the lossy guidg,, thiircorrespond to the integral of
H.: around that same path when only tfitt mode is present. However, choosing eithgy, or i,o, fixes the
other. These considerations also apply in the lossless transmission lines.
Denoting the vectors of voltages, and currents,, by v, andi,,, respectively, the total real power crossing the

reference plane at=-I is P(z=—l)=Re(L'pT gp), where the superscriptf indicates the Hermitian adjoint

(conjugate transpose). The total real power transferred across the referencezsiania dihe lossy guide is

= v o
P=Re [(£ 2 e )X(X 2™k )"2dS)| . @)

n=1 Vion m=1 Lo

[ EthHwt*-zdS) -Re
z=0

Defining the elements of the cross-power maxio be

X, 6 = — femehwz; -zdS, @)
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can compactly express equat{@) as

P-Re(i'Xy ). S

The diagonal elements ¥fare equal to 1; in the presence of loss, the offatial terms oK will generally differ

from O.

IMPEDANCE MATRICES AND THEVENIN-EQUIVALENT SOURCES

We will represent the electromagnetic noise of thermal origin generated in the passive network of Figure 1 at

z=-| by the vector\_ﬁp of modal Thevenin-equivalent voltage sources. The \zgctor is defined by

vy =-Z i +Y, (6)

whereZ, is the impedance matrix of the passive network embedded in the lossless transmission lines. The negative
sign in(6) accounts for the fact tha, is defined with respect to currents which enter the passive network,
whereas the modal currengsare associated with the forward modes in the transmission lines.

We will represent the electromagnetic noise of thermal origin generated in the passive network of Figure 1 at

z=0 by the vector\_ﬁW of modal Thevenin-equivalent voltage sources. The \_7$ctor is defined by

vy =<2 i +9, 7

whereZ, is the impedance matrix of the passive netvamétthe lossless transition embedded in the lossy guide.
Again, the negative sign {{7) accounts for the fact thdj, is defined with respect to currents which enter the
lossless transition, whereas the modal currigrase associated with the forward modes in the lossy guide.

We define the impedance matrix of the lossless transition connecting the embedded network to the lossy guide

by
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=
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I
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Because we have accounted for all modes in the problem, we can speak of this transition as lossless, which
explains the absence of source term@)JnThe negative sign i8) accounts for the fact that the modal currents

i, are associated with the forward modes in the lossy guide, which leave, rather than enter, the transition.
NOISE CORRELATION MATRIX

The noise properties of the passive network=dtare conveniently expressed in the frequency domain by the

matrix ﬁp ﬁp* , Where the overbar indicates the spectral density of the quantity below it [1hth Tiegonal

A

element o@p gp* is the spectral density, |2 |¢\§;n|2 . Tingh element omp ng is the spectral density of

A A

Vo vpm*. These off-digonal elements oﬁp QPT contain the correlations between the elemej;ts of

Twiss [6] shows that when the passive circuit is in thermal equilibrilgm_?,pT is given by
poi-2- M Tz.z71. ©
P p ehﬂkT—l P P

This result is obtained directly from Nyquist's expression for the spectral density of the Thevenin-equivalent
voltage source that describes the noise of a resistor in a lossless line and arguments of thermal equilibrium. In
what follows, we will try to develop an expression comparab{@)téor the noise behavior of the network in the
lossy guide at the reference pla®.

We can determine the Thevenin-equivalent voltage so@[Vces in terms of their counLErparts by applying the
boundary conditioi, = 0 in(7) and(8), in which casegWiW:;M;p . Substitutir{g) into (8) to eliminatev, and

i, gives the desired result

v =Z (Z+Z )'l\j. 10)

Thus the matri

1%,
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=
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1y pt -1\t 7 1
17 p 11 p\ 21" p 11 21(;p+Z ) lplp ((;p+;ll) )% ) (11)

1 1

Substitution 0f9) into (11) results in



ZPT] ((Zp +Z )‘1)*221*- (12)

PROPERTIES OF THE. OSSLESSTRANSITION

We will now use the lossless property of the transition to simfdli#y, eventually expressing the factors on the
right involvingZ,,, Z;,, andz,, in terms ofZ, and the cross-power mati Appendix 1 shows that the impedance

matrix Z, of a passive and lossless circuit satisfies

X Z, +Z X -0, (3

whereX, is defined in accordance with). When we apply13) to the impedance matrix of our transition, we

obtain the condition

¥ ¥
le = le ZZI 10 00
0 x + Pl o= , 14)
- ZZI ZZZ ;lzT ;zzT 0 )_( 00
which is really the four conditions
¥ fyt
;11+;11 ;12+;21 X ) 00 ‘ 15)
XZ +Z Y  XZ +Z X' 00
21 T12 - 22 T2
Using the conditionzll+zllf=0 from(15), we can now write the term Z +Z ¥ ifl2) as
P P
- ; ; e .
ZP+ZP —(ZP+ZH)+(ZP +Z11 ). Substitution intq12) gives
1,072 (z.@z2)'2, + (2,22 2,] (16)
w Tw e MIKT_q 21 =p T11 21 21 =p T11 21



Using the conditiorZ A +Z, 1*)_(r =0 fronil5), we can now writ¢16) as

<>
=2
-
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28] 2 4,@02) 2,007 (2,820 2,007

We can writeZ, in terms ofz,, by using the fact tha, is defined by the relatioy, = Z, (-i,,) when \_9W andjp
are set to 0. Then equati(®) givesy, = -Z, i,, while (8) givesy, = Z, i,, - Z, i,. Combining the two gives =
(Z, + Z,)* Z, 1, Substitution intq8) yieldsv,, = Z,, (Z, + Z,)™ Zy, 1, - Z,, iy, Which leads us to deduce the

expression fog, in terms ofZ,;:

_ _ -1
Z,-2,-2,(Z+2)"'Z, a8)

This expression can be used to replace the t&méZ, + Z,,)™* Zy, in (17) with -(Z,-Z,,):

2,07 = 2[4, -2)&)" - (2, -z ] (19

Now the conditior1?=(;22 +;22T)=(r =0 fron{l5) eliminates the terms involvirg,, in (19), giving the desired result

I~

This is a concise expression for the modal Thevenin-equivalent voltage sources describing the noise of a passive
circuit embedded in the lossy waveguide. Appendix 2 gives the Norton-equivalent current and scattering-parameter

forms of (20).
DISCUSSION

Since we placed no restrictions on the embedded network other than it be passive and no restriction on the
intervening transmission lines and transition other than that they are lossless, (@Wt®@ very general result
that must be satisfied by any passive network embedded in the lossy waveguide. There are a humber of interesting

applications and special cases.
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Multi-port Networks Since no restriction was placed on the

v, | | Waveguide 1

lossy waveguide except that it be closed and be constructeq z, =

only of isotropic materials, we can replace the single lossy {X o } D iy qove [f‘ }

Waveguide 2

waveguide with multiple lossy guides, as illustrated in Figure

2. Equatior(20)is still applicable, except thatis given byFigure 2. Extension to multiport network. Only two

the block-diagonal matrix guides are shown for clarity.
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where ﬁw anck,, refer to the source vector and cross-power matrix afitthguide, respectively.

Alternate Form The general waveguide theory of [8] determines the symmetry of the impedance matrix of a
waveguide junction composed only of passive reciprocal materials. The result is that the impedance matrix of
these waveguide junctions satisfg’=W Z W! |, where superscript iridicates the transpose,

W= diag( f e, xh, zdS / vOniOn)zdiag((vOn*/VOn)Kn) is the diagonal reciprocity matrix, and tKe are the

reciprocity factors of [12] for each mode. Appendix 3 shows that these reciprocity factors are related to the cross-

power matrixX through(X") ' =W X* W1 . Thug20) may be written as



g1f -2z wixwh (g x @ @3)

wTw o MIT_ | W

Dominant ModesWhen the first N modes contain at least all of the dominant ones and the circuit is embedded

in a length of waveguide sufficiently long to damp out all of the modes except the dominant oriéstakes

the form
Z 0
_ wd (24)
= 0 ; ’
w0

whereZ,, is an N by N matrix and,, is a diagonal matrix containing the characteristic impedances of all but

the first N modes. No\20) gives

— nf
o i
fa b 2= 2,0 ¢ (2,0)7 ] 25)

wheregWd is the subvector ojw containing its first N elementgaisdhe upper left-hand N by N submatrix
of (X")!. Equation23) and appendix 3 show th@=V_Vd‘1 )_(dt (I/_Vd‘l)T , whe¢gandW, are the upper left-
hand N by N submatrices ¥fandW, respectively. This last relation is useful when not all of the elemekts of
which is generally infinite in dimension, are known.

Power-Normalized Conductor Representatidie “conductor” voltages and currents of [13] are linear
transformations of the modal voltages and curreptandi,. By analogy with [13] we define the “power-

normalized” conductor voltages and currents, by

yv=Myvy ; [ =M1I@, (26)

wherev, andi, are generally infinite in dimension aMj andM, are invertible and satisfMiT M ) =X :this latter

restriction ensures that the total power is givemp sz v . Equétirbecomes [6]
v ot -2 [;+;*] Q7
[N ehﬂkT—l 4 [4
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In low-loss circular, rectangular, and coaxial 005 o1 05 1 5 10 40
. . Frequency (GHz)
waveguides the off-dgonal elements of the CrOSEfyure 4. The magnitudes of the elements of the mexfor
dtge coupled lines of Figure 3. The frequencies where the
Imaginary parts of. andy,, cross and the quantity.v.|/po

mode to other modes in the guide are generally Jigaphes a broad minimum define the frequency range labeled
v.~v, in the figure.

except at frequencies where the modes are nearly

power matrixX linking the dominant wavegui

degenerate (i.e. when their propagation constants are nearly equal). At these frequencies the modes couple anc
the field patterns of each of the lossy coupled modes can be represented to first order as linear combinations of
the field patterns of lossless uncoupled modal solutions [9], [14]. While this results in larggoffatlielements

of X, this coupling phenomena is limited to narrow bands of frequencies at or above the upper frequency limit of
the guide, and so may usually be ignored in practice.

However large off-digonal elements oK linking dominant modes often do occur in multiconductor
transmission lines over broad ranges of useful frequencies. The lossy asymmetric coupled microstrip lines of
Figure 3 illustrate this phenomena. This transmission line struatppods two quasi-TEM dominant modes,
commonly referred to as tleeandn modes, which correspond to the even and the odd mode of the symmetric
case, respectively. The propagation constants af the
andr modes of the structure of Figure 3 become close
in the frequency range 300 MHz - 5 GHz. While the
low-loss assumptions of [9] and [14] are not met by e e

this high-loss guide, our calculations based on the full-

wave method of Heinrich [15] show that this near
Signal Conductorst € 0.5 pm = 3.602x10Q*'m?)

degeneracy is accompanied by large offydizl Ground Planet(= 5 um.o = 3.602x10Q"m”)
Ei] Substrated, = 12.9, tard = 0)

elements oK.

Since thec andw® modes are the dominant ones the

impedance of a termination embedded in a suﬁicienﬁfb‘gﬁ;:‘symmemc coupled micrositrip lines on a lossless

11



long length of line will take the forif24), whereZ,, is the two-by-twa-modefi-mode impedance matrix. We

can calculate the two-by-two matribv(vd vwdT omode andt-mode Thevenin-equivalent sources fraty and

Q using equatioif25).
Figure 4 plots magnitudes of the elements of the m@uéalculated with the method of [15]. It shows tQat
differs significantly from the identity matrix in the region where the modes couple; the conventional formulation,
in whichQ is absent in the expression relatm Zig will fail there.
While beyond the scope of this work, [13] shows for the case of Figure 3 that the expres?@cpr , the
Thevenin-equivalent voltage sources in the power-normalized dominant-mode conductor representation, assumes

the conventional forn@ hf/(e""*I-1) [;Cd + ;ch] , Wheig, is the impedance matrix in that representation.
CONCLUSION

We have developed a rigorous representation for the thermal electromagnetic noise of circuits embedded in lossy
waveguides based on modal Thevenin-equivalent voltage sources and derived explicit expressions describing the
noise generated by passive networks. The results form a firm foundation for the theory of electrical noise in lossy
waveguides and show that the spectral densities of the modal Thevenin-equivalent voltage sources depend on the
cross-power matriX, a result that cannot be predicted directly from Nyquist's theory. We illustrated the results

with a practical example in which the off-diagonal elemenis afe large and the conventional formulation fails.

APPENDIX1

LOSSLESSCONDITION

The net poweP entering a lossless circuit with impedance maris

P=Re(i'Xv) =Re(i'XZi)=—(i'XZi+[i'XZi]"). (28)

| =

The quantityi*X Z [ is a scalar and so is equal to its transpose. The¢gspie

(('XZi+i'Z'X') = 1 X Z+Z"XNi. 29)

[\S}
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Since the circuit is lossled3 must equal O for all current vectairs , which implies that lossless networks satisfy

the relationX Z+Z'X"=0 .

APPENDIX?2

OTHER REPRESENTATIONS OH HERMAL NOISE

The Norton-equivalent current soura_%ws , defined analogously to the Thevenin-equivalent voltage sources,

satisfy

Q- Xy -i (30)

whereY,, = Z,* is the admittance matrix of the circuit. We can refavtvte \_9Wto by

Lo=i),0=2" 2, @31)
S0, using20),
i, -z0 37 @™ -2 [rx's(rx]. (2)
wow w w oW w ehﬂkT—l w w

We can also expre§20)in terms of the pseudo-wave parameters of [8] in the lossy guide. The pseudo-waves
correspond to traveling waves when their reference impedance is set equal to the characteristic impedance of the
mode. They correspond to the waves conventionally used in microwave design when their reference impedance
is set real. The vectors of forward pseudo-waesnd backward pseudo-wavgswith reference impedances

Z." are related to the voltages and currents by [8]

1 .
a, =5 U +Z 1) (33
and
p -1 Z i
b, =7 U -2 .1 ), (34



where the diagonal matricgs; andU are defined by, = diagl.{") and

v ,/ReZ "
g=diag |On| (ref) )

VO" | Zref 5 |

The Thevenin-equivalent voltage is

forward wave source§W and pseudo-wave reflection coefficient mgtere defined by [8]

a =1 b +4d ,

which implies that

I
1
—_
—_
|
I
—
I
==

=
| =
=
=

A

Now we canexpresgg 4 ¥ intermsipfp '
w w w w

Substituting(20) into (39) gives

I
I

- WT % ehﬂ/’i];_l (1_Lw)g [ ;W ()=(T)—1 + (;W ()=(T)-1 )T ] QT(l—LW)T.

The relationZ =(1 —Q‘ILW uta +Q‘1£W U)Z_, from Appendix E of [8] shows ttd0) is

T2

I
1

1 i . . .
wdy =7 Ty | L) AL )T+ (L) AQ-L )T

where

14

335)

(36)

37

(38)

(39

(40)

(1)



A=2 UXHY' U 42)

As explained in the text, these results are also applicable to multiport networks. In that case, the pseudo-wave

scattering-parameter matrix replad&sin (41).

APPENDIX3

RELATIONS BETWEEN X AND W

Figure 5 shows the abrupt connection of a lossless line to

a lossy waveguide. The transition is again defined to begin

z=-l and to terminate &0 and contains only lossless and Lossless

: Lossy
Waveguide |

Waveguide /
reciprocal materials. If we account for all of the modes at the

two reference planes at-l andz=0, we can say, from the i o
. . . . VP1 | Vi
preceding arguments, that its impedance matrix sat{df)s Ky F“ zu} =]
. . .. - . v || Z,,Z
Since the materials comprising the transition are reciprocal, Vil | LSSl Ve

we can also apply the conditiggZi=W Z W!  of [8] and

[12], where W= diag(feWthWm'zdS / melwom) , 10 itSFigure 5. Abrupt connection of lossless transmission

. ) . line to a lossy waveguide.
impedance matrix8). The result is

t t -1
;11 ;21 ~ 10 ;11 ;12 10 ~ ;11 ;12V=V @3)
ztz'| |[ow|lz z ||[ow' wz wz w'l|’
T T 21 722 - T T T

whereW is the reciprocity matrix for the lossy waveguide (the reciprocity matrix for the lossless guide is the
identity matrix [12]).

Now, combing the lower-left conditions ¢f5) and(43) gives

oo o _ -1 t
Z"=-X2Z =-XW'Z)". 44)

12

The upper-right endition of(15) gives

15



z'=--X2", 45)

Z"=wZz". 46)

* _ -1 * *
Wz --XW'XZ". @7

Since equatiofd7) is true for the connection ahylossless guide to the lossy guide, we must in general have

wh= X w'Xx, (48)
which in turn implies
XH' = W Xt whH 49)
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